MTH403 Assignment 1 Fall 2022 Solution
Question #1:
Find real𝑥and𝑦if(𝑥–𝑖𝑦)(3+5𝑖)istheconjugate of–6–24𝑖.
SOLUTION:
Accordingtocondition
(𝑥−
𝑖𝑦)(3+
5𝑖)=̅−̅̅6̅̅−̅̅̅2̅̅4̅̅𝑖
3𝑥+5𝑥𝑖−3𝑦𝑖−5𝑦𝑖2=−6+24𝑖
3𝑥+ 5𝑥𝑖− 3𝑦𝑖−
5𝑦(−1)=−6+ 24𝑖 ∴𝑖2=−1
3𝑥+ 5𝑥𝑖−
3𝑦𝑖+ 5𝑦=−6+ 24𝑖(3𝑥 + 5𝑦) + 𝑖(5𝑥 − 3𝑦) =−6 + 24𝑖Bycomparing
3𝑥+ 5𝑦=−6…………(1)
5𝑥−3𝑦=24………..(2)
Multiplyequation(1)by3 andequation (2)by5 thenadd
(9𝑥+ 15𝑦)+ (25𝑥− 15𝑦)=−18+ 110
9𝑥+15𝑦+25𝑥−15𝑦=92
34𝑥=92
𝑥=92=3
34
𝑥=3
Puttingx =3 inequation(1)
3(3) + 5𝑦=−6
9 + 5𝑦=−6
5𝑦=−6− 9
5𝑦=−15
𝑦=−15=−3
5
𝑦=−3
Question#2:
Simplify(√3 +3𝑖)31byusingDe-Moiver’stheorem.
SOLUTION:
Here 𝑧=(√3+3) 𝑎𝑛𝑑𝑛=31
Weknowthat
𝑧𝑛=𝑟𝑛(𝑐𝑜𝑠𝑛𝜃+𝑖𝑠𝑖𝑛𝑛𝜃)
So,firstwefind rand𝜃
𝑟=√(√3)2+(3)2=√12=2√3
𝛼=𝑡𝑎𝑛−1(3)=𝑡𝑎𝑛−1(√3)=𝜋
𝜃=𝛼=𝜋
3
√3 3
(𝑏𝑒𝑐𝑎𝑢𝑠𝑒𝑧𝑙𝑖𝑒𝑖𝑛1𝑠𝑡𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡)
So,theaboveequationbecome
(√3+3)31=(2√3)31(cos(31)𝜋+𝑖𝑠𝑖𝑛(31)𝜋)
3 3
(√3+3)31=(2√3)31(cos31𝜋+𝑖𝑠𝑖𝑛31𝜋)
3 3
(√3+3)31=(2√3)31(cos(10π+𝜋)+𝑖𝑠𝑖𝑛(10𝜋+𝜋))
3 3
(√3+3)31=(2√3)31(𝑐𝑜𝑠𝜋+𝑖𝑠𝑖𝑛𝜋)
3 3
(√3+3)31=(2√3)31(1+𝑖√3)
2 2
#Mth403_Assignment_No_1_Solution_Fall 2022_Correct_Solution
0 Comments
Post a Comment